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Abstract. We calculate the ground-state energy of a quasi-one-dimensional electron gas with
Coulomb interaction depending on the spin-polarization parameterξ and the Wigner–Seitz
parameterrs . Cylindrical quantum wires of radiusR0 are considered. We describe the pair-
correlation functiong(z = 0) as a function ofrs and ξ . We derive the spin-susceptibility
as a function ofR0 and rs in different approximations. Numerical results obtained for the
spin-susceptibility are fitted by an analytical expression. Collective modes (charge-density and
spin-density excitations) in cylindrical quantum wires are described and the validity range of
our calculation is discussed.

1. Introduction

In two recent papers we have calculated the density dependence of the ground-state energy
and the compressibility [1] and the spin-polarization dependence of the ground-state energy
and the spin-susceptibility [2] of the quasi-one-dimensional electron gas with aparabolic
confinement potential. The long-range Coulomb interaction of the electrons is taken into
account. We used the sum-rule version of the Singwi–Tosi–Land–Sjölander (STLS) [3]
approach. The STLS approach is a very useful approach to describe many-body effects
in the low-density regime of interacting quantum systems [4] where the random-phase
approximation (RPA) [5] fails to give quantitative results. The modification of the RPA with
a local-field correction (LFC), for instance via the STLS approach, improves the validity
range considerably. To calculate the spin-susceptibility we generalized the STLS approach
in order to describe spin-polarization effects [2].

In the present paper we describe in more detail some aspects of our calculation and we
study acylindrical confinement potential. We discuss the validity range of our approach in
detail. This is of importance because for long-range interaction potentials exact results are
not available. We use a cylindrical confinement potential where the wire width is described
by its radiusR0. In that case the Fourier transform of the interaction potential is given in
analytical form [6]. Many-body effects for the unpolarized electron gas have been already
described for this model within the STLS approach [7].

The paper is organized as follows. In section 2 we introduce the model. The theory is
briefly described in section 3. The results of our calculation (spin-susceptibility and spin-
density excitations) are given in section 4. The discussion of our results (validity range and
experiments) is presented in section 5. We conclude in section 6.

0953-8984/98/214625+12$19.50c© 1998 IOP Publishing Ltd 4625



4626 A Gold and L Calmels

2. Model

For an electron gas in one dimension the Wigner–Seitz parameterrs is given by the one-
dimensional electron densityN asrs = 1/2Na∗. a∗ = εL/m∗e2 is the effective Bohr radius
defined with the effective electron massm∗, the background dielectric constantεL and the
electron chargee. The energy scale is given by the effective Rydberg Ry∗ = 1/2m∗a∗2

with the Planck constanth/2π = 1. The electron density defines the Fermi wavenumber
kF via N = 2kF /π . The spin-polarization parameterξ with 0 6 ξ 6 1 is expressed
as ξ = (N+ − N−)/N with N = N+ + N− and the electron densitiesN± are given by
N± = N(1± ξ)/2. The Fermi wavenumbers of the polarized subsystems are written as
kF± = kF (1± ξ) = πN±. We assume that only the lowest one-dimensional subband is
occupied (one-subband model) and our calculation is made for zero temperature.

The Fourier transform of the interaction potential is written asV (q, λ) = λV (q) where
0 6 λ 6 1 is the coupling constant. We assume a cylindrical confinement in thexy-plane
with R0 as the wire radius and electrons are free to move in thez-direction. The Coulomb
interaction potentialV (q) in the Fourier space is expressed as [6]

V (q) = e2

2εL
f (qR0) (1a)

with

f (x) = 144

x2

[
1

10
− 2

3x2
+ 32

3x4
− 64

I3(|x|)K3(|x|)
x4

]
. (1b)

I3(x) andK3(x) are Bessel functions. The one-subband model implies that the Fermi energy
εF /Ry∗ = (kF a∗)2 must be smaller than the intersubband energy1E12/Ry∗ ≈ 9a∗2/R2

0 [6]
which leads tors > r∗s ≈ R0/4a∗ for the unpolarized system. Forrs < r∗s at least two
subbands are occupied.

3. Theory

The ground-state energy per particleε0(rs, ξ) of the polarized electron gas is given
in terms of the kinetic, the exchange and the correlation contributions asε0(rs, ξ) =
εkin(rs, ξ) + εex(rs, ξ) + εcor (rs, ξ). For the one-dimensional electron gas the kinetic
energy per particle is given byεkin(rs, ξ)/Ry∗ = π2(1+ 3ξ2)/48r2

s . The Hartree energy
is zero: we consider a model where a positive jellium gives rise to alocal neutrality.
The interaction energy is expressed by the exchange and the correlation contributions as
εint (rs, ξ) = εex(rs, ξ)+ εcor (rs, ξ) and is written as

εint (rs, ξ)/Ry∗ = a∗

2π

∫ ∞
0

dq f (qR0)

∫ 1

0
dλ [S(q, ξ, λ)− 1]. (2)

We use a generalized Feynman–Bijl expression for the static structure factor (SSF)
S(q, ξ, λ), which is given in terms of the contributions of the electron–hole excitations
and the collective modes. For the SSF of the spin-polarized electron gas we obtain the
analytical result [2]

S(q, ξ, λ) = 1/[1/S0(q, ξ)
2+ λ/Sp(q, ξ, λ)2]1/2. (3)

S0(q, ξ) is the SSF of the free polarized electron gas (particle–hole excitations) and
the second term gives the contribution of the plasmon excitations due to the Coulomb
interaction. S0(q, ξ) is given by S0(q, ξ) = (1 + ξ)S0+(q)/2 + (1 − ξ)S0−(q)/2 with
S0±(q 6 2kF±) = |q|/2kF± and S0±(q > 2kF±) = 1. The termSp(q, ξ, λ) is given by
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Sp(q, ξ, λ) = [q2/4m∗NV (q)[1 − G(q, ξ, λ)]] 1/2 where the spin-polarization only enters
via the LFCG(q, ξ, λ).

By neglectingG(q, ξ, λ) in the SSF, we obtain the mean-spherical approximation (MSA)
[8], which is very similar to the RPA. Note, however, that within the RPAS(q, ξ = 0) is
calculated numerically as a frequency integral over the dynamical SSF. Within the MSA the
analytical form of the SSF as given in equation (3) is used. The Hartree–Fock approximation
(HFA) for the ground-state energy is obtained by using the SSF of the free electron gas
S0(q, ξ) in equation (2). In the HFA only exchange effects are taken into account and
correlation effects are neglected. For the LFC we use the three-sum-rule approach of the
STLS theory, where the LFC is described by

G(q, ξ, λ) = rs a∗

πR0C2

f ([q2R2
0 − |q|q0R

2
0C3+ q2

0R
2
0/C

2
1]1/2)

f (qR0)
. (4)

The coefficientsC1 = C1(rs, R0, ξ, λ), C2 = C2(rs, R0, ξ, λ) andC3 = C3(rs, R0, ξ, λ) are
determined self-consistently [1]. The wavenumberq0 is given byq0 = 2/r1/2

s a∗.

Figure 1. Pair-correlation functiong(rs , ξ, z = 0) versus
Wigner–Seitz parameterrs for different values of the spin-
polarization parameterξ and for wire widthR0 = a∗.

Figure 2. Pair-correlation functiong(rs , ξ, z = 0) versus spin-
polarization parameterξ2 for rs = 1 andR0 = a∗. The dotted line
represents the HFA.

The pair-correlation functiong(rs, ξ, z) is obtained from the SSF by a Fourier transform
[5], which gives, forz = 0, the analytical result [3]

g(rs, ξ, z = 0) = 1−G(q →∞, ξ, λ = 1). (5a)

With the HFA for the LFC one obtainsGHFA(q →∞, ξ, λ = 1) = (1+ ξ2)/2 and we find

gHFA(rs, ξ, z = 0) = (1− ξ2)/2. (5b)
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In figure 1 we showg(rs, ξ, z = 0) versusrs and in figure 2 we showg(rs, ξ, z = 0)
versusξ2. Even for largers , g(rs, ξ = 1, z = 0) is only slightly negative. The fact that the
pair-correlation functiong(rs, ξ = 0, z = 0) becomes negative at largers is a well known
defect of the STLS approach [4]. The results obtained for the pair-correlation function
show that our approach gives reasonable values. This is not a trivial point because the
STLS approach is not exact. Moreover we use a three-sum-rule approach for the LFC
together with an analytical expression for the SSF. These two additional approximations
simplify the numerical calculations considerably.

Figure 3. Correlation energyεcor versus spin-polarization parameterξ2

for rs = 1 andR0 = a∗. The solid line represents the STLS approach
and the dashed line the MSA.

Our results for the correlation energyεcor (rs, ξ) are shown in figure 3 as a function of
ξ2 for rs = 1 andR0 = a∗. We note thatεcor (rs, ξ) is nearly proportional toξ2. However,
the slopes obtained within the STLS approach and the MSA approach are different. As we
shall see in the following, this fact has considerable consequences for the spin-susceptibility
obtained within the two approaches. We stress that we use a coupling-constant integration
in order to calculate the ground-state energy.

4. Results

4.1. Spin susceptibility

A small magnetic field must be applied parallel to the wire axis and the magnetization
must be measured in order to determine the spin-susceptibility. The spin-susceptibility of
the free electron gas is given byκ0 = 16r3

s a
∗/π2Ry∗. For the interacting electron gas the

spin-susceptibilityκs , including exchange and correlation, is expressed as

κ0

κs
= 1+ 8r2

s

π2Ry∗
∂2(εex + εcor )

∂ξ2

∣∣∣∣
ξ→0

= 1+ κ0

κs,ex
+ 8r2

s

π2
αs. (6)

αs = (1/Ry∗)∂2εcor (rs, ξ)/∂ξ
2|ξ→0 is called the spin-stiffness [5].κs defines the static

magnetic susceptibilityXM by

XM = µ2
BN

2κs (7)

and µB is the Bohr magneton. From the ground-state energy as function of the spin-
polarization we can calculate the spin-susceptibility.

We obtainεex(rs, ξ → 0) = εex(rs, ξ = 0) − ξ2f (2kFR0)Ry∗/8rs [2] and κs,ex can be
calculated analytically:κ0/κs,ex = −2rsf (2kFR0)/π

2. We conclude that within the HFA
the spin-susceptibility is given by [2]

κ0/κs,HFA = 1− 2rsf (2kFR0)/π
2. (8)

An instability pointκ0/κs,HFA = 0 occurs atrs = rscs,HFA andκ0/κs,HFA becomes negative
at low densityrs > rscs,HFA. Such a behaviour is also found for the three-dimensional
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electron gas [5]. Within the MSA the spin-susceptibility can be calculated analytically and
is given by [2]

κ0/κs,MSA = 1/[1+ 4rsf (2kFR0)/π
2]1/2. (9)

We repeat that the MSA corresponds to the RPA and we note thatκ0/κs,MSA is always
positive.

A simple proposal to calculate the spin-susceptibility was given by Vosko, Wilk and
Nusair (VWN) [9] for the three-dimensional electron gas. Accordingly,αs is given by

αs,VWN = αs,MSA εcor (rs, ξ = 1)− εcor (rs, ξ = 0)

εcor,MSA(rs, ξ = 1)− εcor,MSA(rs, ξ = 0)
. (10)

αs,MSA is given in terms of the interaction potential as [2]

αs,MSA = − π
2

8r2
s

[
1− 1

[1+ 4rsf (2kFR0)/π2]1/2
− 2

π2
rsf (2kFR0)

]
. (11)

Within the VWN approach one only needs to knowεcor (rs, ξ = 1) and εcor (rs, ξ = 0)
within the STLS approach and the MSA. We believe that the VWN approach represents
an interesting test of the spin-stiffness obtained from the correlation energyεcor (rs, ξ → 0)
within the ξ -dependent STLS approach. This test is useful because the polarization
dependence of the ground-state energy is difficult to obtain within Monte Carlo calculations
[10]. Within the STLS approach we numerically calculateαs by

αs = 2[εcor (rs, ξ1)− εcor (rs, ξ = 0)]/[Ry∗ξ2
1 ]. (12)

We have chosenξ1 = 0.3 in our calculation and we have checked that withξ1 = 0.2 and
ξ1 = 0.1 we obtain nearly identical results.

The spin-stiffnessαs is shown in figure 4 versusrs for R0 = a∗. We note a difference
between the STLS approach and the MSA:αs,MSA > αs . This becomes clear from figure 3.
From a theoretical point of view figure 4 is the most important figure of the present paper.
For largers we conclude from equation (6) thatαs must be calculated with high precision:
the correlation contribution to the spin-susceptibility enter the calculation viar2

s αs . In the
future one should try to get more accurate values for the spin-stiffness, for instance by
Monte Carlo calculations.

Figure 4. Spin-stiffnessαs versus Wigner–Seitz parameter
rs for R0 = a∗ in different approximations. The solid and
dashed lines represent the STLS approach and the MSA,
respectively. The solid dots represent the VWN approach.

In figure 5 we showκ0/κs versusrs in various approximations forR0 = a∗. Important
is the fact that the STLS and the VWN approaches give similar results. Correlation effects
give a positive contribution to the inverse spin-susceptibility, while exchange effects give
a negative contribution. Moreover, the validity range of the HFA and the MSA is small:
rs < 0.5 ≈ 2r∗s for R0 = a∗. These results show that (i) correlation effects are important,
compare with the HFA and (ii) correlation effects must be described using an LFC, compare
with the MSA. We find a Bloch instability (κ0/κs < 0) for rs > rscs ≈ 2rscs,HFA [11] within
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Figure 5. Inverse spin-susceptibility 1/κs (in units of the
inverse spin-susceptibility of the free electron gas 1/κ0)
versus Wigner–Seitz parameterrs for R0 = a∗ in different
approximations. The solid, dashed and dotted lines represent
the STLS approach, the MSA and the HFA, respectively. The
solid dots represent the VWN approach.r∗s for the application
of the one-subband model is indicated.

Table 1. Inverse spin-susceptibility 1/κs (in units of the inverse spin-susceptibility of the free
electron gas 1/κ0) for various values ofrs and the wire width parameterR0 within the STLS
approach. In the last lines we give values ofr∗s andrsce.

κ0/κs

rs R0 = a∗/5 R0 = a∗/2 R0 = a∗ R0 = 2a∗ R0 = 4a∗

0.1 0.981 0.996 0.999 1.000 1.000
0.2 0.913 0.972 0.991 0.998 1.000
0.4 0.727 0.870 0.946 0.983 0.999
0.6 0.548 0.733 0.865 0.949 0.985
0.8 0.393 0.596 0.763 0.897 0.966
1.0 0.262 0.470 0.657 0.830 0.939
1.2 0.150 0.358 0.553 0.755 0.902
1.5 0.010 0.214 0.410 0.636 0.834
1.8 −0.102 0.095 0.277 0.520 0.755
2.0 0.008 0.216 0.448 0.699
2.5 −0.104 0.071 0.290 0.556
3.0 −0.034 0.166 0.424
3.5 0.074 0.309
4.0 0.013 0.217
4.5 −0.021 0.148
5.0 0.101
5.5 0.077
6.0 0.074
6.5 0.092
r∗s 0.05 0.125 0.25 0.5 1.0
rsce 1.02 1.43 1.95 2.56 3.63

the STLS and the VWN approximations, while this instability is absent within the MSA.
The Bloch instability will be discussed in section 5 in detail.

Our numerical results for the spin-susceptibility within the STLS approach are given in
table 1 for different values ofR0/a

∗ andrs . We note that with increasingrs and decreasing
R0 the ratioκ0/κs decreases. The decrease ofκ0/κs is due to many-body effects (exchange
and correlation).

From figure 5 we derive the relation 1/κs,HFA < 1/κs < 1/κs,MSA. This motivated us
to use an analytical expressionκs,A for the spin-susceptibility given by

κ0

κs,A
= 1

2

[
(1− p) κ0

κs,HFA
+ (1+ p) κ0

κs,MSA

]
. (13)
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A nice fit of our data in table 1 is obtained with (13) forp = 0.55, see figure 6. We note
that κ0/κs,A has a large validity range (rs 6 1.5rscs,HFA) and holds for all values ofR0/a

∗

and can be used to fit experimental results by usingR0 as the fit parameter (assuming that
the density is known). We believe that equation (13) is useful for experimenters.

Figure 6. Inverse spin-susceptibility 1/κs (in units of the inverse spin-susceptibility of the free
electron gas 1/κ0) versus Wigner–Seitz parameterrs for R0 = a∗/5, R0 = a∗, andR0 = 4a∗
within the STLS approach as the solid dots. The solid lines represent (13) withp = 0.55.

4.2. Collective excitations

The charge-density and the spin-density response functions are determined by effective
interaction potentials. For small wavenumbers these effective interaction potentials are
determined by sum rules for the compressibilityκc and the spin-susceptibilityκs [12]. The
compressibility of the quasi-one-dimensional electron gas with cylindrical confinement was
calculated in [7]. The application of the sum-rules to quantum wires [13] leads to the
following equations for the long-wavelength collective charge-density modesωc(q → 0)
and spin-density modesωs(q → 0):

ωc(q → 0) = vF |q|[4rsf (qR0→ 0)/π2+ κ0/κc]
1/2 (14a)

and

ωs(q → 0) = vF |q|[κ0/κs ]
1/2. (14b)

vF = kF /m
∗ is the Fermi velocity. Sincef (x � 1) = 4 ln(2/x), in the long-

wavelength limit the charge-density excitations are only weakly modified by many-body
effects contained inκ0/κc, see (14a). (14b) shows that the spin-susceptibility determines
the sound velocityvs of the spin-density excitations defined byωs(q → 0) = vs |q|. We
obtainvs = vF [κ0/κs ]1/2 < vF and many-body effects are essential to predict the spin-sound
velocity.

In figure 7 we showωc(q → 0)/vF |q| for qa∗ = 0.1 andωs(q → 0)/vF |q| versusrs for
different wire radii. We note that the spin-density modes are below and the charge-density
modes are above the electron–hole (eh) excitation spectrum given byωeh(q → 0) = vF |q|.
Similar results have been obtained before forωc(q) [1, 6, 7, 13]. However, our results shown
in figure 5 demonstrate that the HFA is not a quantitative theory to describe spin-density
excitations. Spin-density excitations within the HFA have been discussed recently [14].
We conclude from our results shown in figure 5 that correlation effects are very important
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Figure 7. Charge-density excitationsωc(q → 0)/vF q
and spin-density excitationsωs(q → 0)/vF q versus
Wigner–Seitz parameterrs according to (14) for different
confinement parametersR0. ωc(q → 0)/vF q is calculated
for qa∗ = 0.1. Our results contain exchange and correlation
effects. Note the different scales forωc(q → 0) and
ωs(q → 0).

for a quantitative analysis ofvs [2]. Exchange-only calculations [14] overestimate many-
body effects for spin-density excitations and cannot be trusted. Compared to the HFA,
the prediction of the STLS approach are quite spectacular: forrs = rscs,HFA we derive
κ0/κs,HFA = 0 andωs,HFA(q → 0)/vF |q| = 0 within the HFA, while we findκ0/κs ≈ 0.4
andωs(q → 0)/vF |q| ≈ 0.63 within the STLS approach.

Collective modes in quantum wires have also been calculated within the bosonization
approach [15]. In this approach one neglects electron–hole excitations. We note that the
existence of electron–hole excitations has been shown by experiment. The collective modes
in the bosonization approach [15] are described by unspecified functions. As long as these
functions are not specified it seems that the predictive power of this theory approaches zero.

5. Discussion

5.1. Validity range and the Bloch instability

In the present paper we studied a cylindrical confinement model for quantum wires where
the interaction potential is given in analytical form [6]. We used in our calculation a one-
subband model and the Fermi energy must be smaller than the intersubband energy (between
the first and the second subband). One obtains the conditionrs > r∗s ≈ 0.25R0/a

∗.
From our numerical results we found a Bloch instability [11] at a critical (c) Wigner–
Seitz parameterrsc. Some values forrsc, as found from the ground-state energy condition
ε0(rsce, ξ = 0) = ε0(rsce, ξ = 1) (rsce with e for energy) or from the spin-susceptibility
conditionκ0/κs(rscs) = 0 (rscs with s for susceptibility), are given in table 2. The simplest
estimate of the validity range of our results is to argue that forr∗s < rs < rsce our results
should be valid, supposing that the STLS approach gives accurate results for the ground-state
energy and forκs .

The validity range of the STLS approach is difficult to estimate. From a similar
calculation for the three-dimensional electron gas and a comparison with quasi-exact Monte
Carlo calculations [16] we estimate the validity range of thespin-susceptibilitycalculations
within the STLS-approach asrs < 2rscs,HFA (rsce,HFA ≈ rscs,HFA) [17]. A similar
conclusion is obtained by applying our method to a one-dimensional electron gas with
short-range interaction and comparing with quasi-exact results [18]: forrs/rscs,HFA < 1
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Table 2. Instability pointrsc for the Bloch instability for various values of the width parameter
R0. In the first three columns we show the valuersce (with e for energy and defined by
ε0(rsce, ξ = 0) = ε0(rsce, ξ = 1)), calculated within the HFA (rsce,HFA) and the STLS approach
(rsce). In the last three columns we show the valuerscs (with s for susceptibility and defined
by κ0/κs = 0) within the HFA (rscs,HFA) and the STLS approach (rscs ).

R0/a
∗ rsce,HFA rsce rsce/rsce,HFA rscs,HFA rscs rscs/rscs,HFA

0.2 0.72 1.02 1.4 0.75 1.52 2.0
0.5 1.01 1.43 1.4 1.08 2.04 2.0
1.0 1.36 1.95 1.4 1.46 2.85 2.0
2.0 1.88 2.56 1.4 2.06 4.17 2.0
3.0 2.30 3.11 1.4 2.55 5.4 2.1
4.0 2.66 3.63 1.4 2.98 ≈ 6 ≈ 2

our approach is quantitatively correct, while for 1.5 < rs/rscs,HFA < 2 an error smaller
than 10% could appear. For the present model and forR0/a

∗ = 1 this means that our
results forκs should be valid for 0.25< rs < 2rscs,HFA = 2.9. Note that forR0/a

∗ = 1 we
found rsce = 1.95 andrscs = 2.85. This shows that concerning the existence of the Bloch
instability we cannot make a definitive statement because our theory is not exact.

According to the results obtained in [17] and [18] our numerical results for the spin-
susceptibility and the spin-density excitations can be trusted for

r∗s < rs < 1.5rsce,HFA ≈ rsce. (15)

(15) represents a conservative estimate. Forrs > 1.5rsce,HFA we expect that our results are
only qualitatively correct. We add that the HFA and the MSA have a very limited validity
ranger∗s < rs < 2r∗s .

It was pointed out by Bloch that a three-dimensional electron gas becomes spin polarized
at low electron density forrs > rsce,HFA = 5.45 [11]. This argument was given within
the HFA. Correlation effects, obtained with Monte Carlo calculations, shift the instability
point to rsce ≈ rscs ≈ 70 [16]. We conclude that in the three-dimensional electron gas
rsce/rsce,HFA ≈ 13 and the instability point is determined by correlation effects. For quasi-
one-dimensional systems with a cylindrical confinement we found that a Bloch instability
occurs within the STLS approach at relatively high density depending on the wire width
R0 [19]: rsce/rsce,HFA ≈ 1.4 and correlation effects [20] are less important for the
instability than exchange effects. Strictly speaking, the Bloch instability occurs atrsce
whereε0(rsce, ξ = 0) = ε0(rsce, ξ = 1). We find thatκs is finite at the density of the Bloch
instability rsce ≈ 1.4rsce,HFA. For rs < rsce we foundε0(rs, ξ = 0) < ε0(rs, ξ = 1) and
for rs > rsce we obtainedε0(rs, ξ = 1) < ε0(rs, ξ = 0). If we definerscs as the critical
Wigner–Seitz parameter whereκ0/κs = 0, another definition of the Bloch instability, we
obtain numerically the relationrscs ≈ 2rscs,HFA with rsce,HFA ≈ rscs,HFA, see table 2.

For a two-dimensional parabolic confinement in thexy-plane [21], with a wire width
characterized by the lengthb, the critical Wigner–Seitz parameter was reported in [2] and
for an anisotropic confinement model (with a one-dimensional parabolic confinement of
width δ in thex-direction and a one-dimensional delta-confinement in they-direction) [22]
the critical density for the Bloch instability also was calculated [23]. In figure 8 we show
the critical Wigner–Seitz parameterrsce for the different models as a function of the wire
width parametersR0, b andδ. rsce for the two-dimensional parabolic confinement is nearly
a factor of two larger than for the cylindrical confinement. We note that for the parabolic
confinement one also findsrsce ≈ 1.4rsce,HFA and the largerrsce compared to the cylinder
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Figure 8. Critical Wigner–Seitz parameterrsce versus width parameters
R0/a

∗, b/a∗ and δ/a∗ for a cylindrical [19], a parabolic [2] and an
anisotropic [23] confinement potential, respectively.

confinement is due to the softer potential for givenrs and b = R0. We cannot give a
definitive conclusion about the existence of the Bloch instability. As we argued in the
last subsection a conservative estimate of the validity range of our calculation of the spin-
susceptibility within the STLS approach is aboutr∗s 6 rs 6 rsce.

It was predicted by Lieb and Mattis that the ground state of an interacting electron gas in
one dimension is unmagnetized [24]. We cannot make predictions about the magnetization
for rs > rsce: our ground-state energy calculation only suggests that forrs > rsce the spin-
degeneracy is lifted (the Fermi wavenumberkF is multiplied by 2). Some arguments why
the Lieb–Mattis theorem should not apply to the present model were discussed in [2]. We
refer the reader to this reference and to our discussion of experiments.

5.2. Comparison with experiments

Recent experimental results [25–27] on ballistic transport in quantum point contacts seem to
confirm the existence of a Bloch instability. A detailed analysis of the experiment performed
in [26] has been given in [2]. Even if the Bloch instability does not exist (supposing that the
Bloch instability is an artifact of our approximate theory) it is clear from our calculation that
at rs > rsce the ground-state energies of the unpolarized and the polarized one-dimensional
interacting electron gas are nearly equal and a small magnetic field will polarize the electron
gas. In fact, a finite magnetic field, applied parallel to the wire axis, gave experimental
evidence for the existence of the Bloch instability [25–27].

In this paper we gave quantitative predictions for spin-density excitations in quantum
wires. We showed that the spin-susceptibility determines collective spin-density excitations.
Electronic Raman spectroscopy, as already performed [28–30], confirmed the existence of
charge-density and spin-density waves together with particle–hole excitations. However,
the experiments have been made at high electron densities and large wire radii where
ωs(q → 0) ≈ vF |q|. Many-body effects in this parameter range are small and a comparison
with our theory is not conclusive:vs − vF is very small and difficult to extract from the
experimental results.

5.3. Electronic confinement models

We would like to suggest an experiment in order to obtain information about the quantum
confinement for wires. Suppose that experimentally the collective modes (density and
spin) and the electron–hole (eh) excitations of a quantum wire have been measured for
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a given wavenumberq. The electron density can be determined from the one-particle
excitations:vF = ωeh(q → 0)/|q|. The spin-density excitations can be used to obtain the
width parameter (see equation (13) and equation (14b)), for instance within the cylindrical
confinement. Then, the energy of the collective charge-density excitations is defined, for
a given confinement model and a given wavenumber. If the theoretical prediction does
not agree with the experimental value one has to modify the confinement model. Within a
systematic study, one can obtain information about the electronic confinement potential in
quantum wires. This could help to understand and improve technological processes used to
fabricate quantum wires.

The confinement potential is an input function in our theory. Therefore, the ‘real
numbers’ for the excitation spectrum within different confinement potentials must be known
in order to give the experimenter a sufficient number of models (‘options’) to compare
with experimental results. The cylindrical confinement, studied in the present paper, is
in competition with the two-dimensional oscillator confinement potential [2, 21] and the
anisotropic confinement [22, 23] potential studied before.

6. Conclusion

For acylindrical confinement modelwe calculated the spin-susceptibility of the quasi-one-
dimensional electron gas. Analytical and numerical results for the spin-susceptibility have
been presented including exchange and correlation.

The excitation spectrum, consisting in charge-density waves, spin-density wavesand
electron–hole excitations, has been calculated in the long-wavelength limit. The validity
range of our calculations has been discussed. Our theory for the collective modes is
predictive and can be tested by Raman scattering experiments.
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